1. In Micro and Nano Technologies, Nanotechnology and Photocatalysis for Environmental Applications. ed. M. Tahir, M. Rafique, M. Rafique. Amsterdam: Elsevier Inc. 2020. 244 p.
2. F. Huang, A. Yan, H. long Semiconductor Photocatalysis - Materials, Mechanisms and Applications http://dx.doi.org/10.5772/63234
3. Li R., Li T., Zhou Q. Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment – A Review. Catalysts. 2020;10(7): 804. https://doi.org/10.3390/catal10070804
4. Janczarek M., Kowalska E. On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems. Catalysts. 2017;7(11): 317. https://doi.org/10.3390/catal7110317
5. Kang I., Wise F.W. Electronic structure and optical properties of PbS and PbSe quantum dots. Journal of the Optical Society of America B. 1997;14, (7): 1632-1646. https://doi.org/10.1364/JOSAB.14.001632
6. Su G., Liu C., Deng Z., Zhao X., Zhou X. Size-dependent photoluminescence of PbS QDs embedded in silicate glasses. Optical materials express. 2017; 7(7): 2194-2207. https://doi.org/10.1364/OME.7.002194
7. Zhang H., Gao Y., Zhu G., Li B., Gou J., Cheng X. Synthesis of PbS/TiO2 nano-tubes photoelectrode and its enhanced visible light driven photocatalytic performance and mechanism for purification of 4-chlorobenzoic acid. Separation and Purification Technology. 2019; 227: 115697. https://doi.org/10.1016/j.seppur.2019.115697
8. Ratanatawanate C., Tao Y., Balkus K.J.Jr. Photocatalytic Activity of PbS Quantum Dot/TiO2 Nanotube Composites. Journal of Physical Chemistry. C 2009, 113, 24, 10755–10760. https://doi.org/10.1021/jp903050h
9. Wang C., Thompson R.L., Ohodnicki P., Baltrus J., Matranga C. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry. 2011;21: 13452. https://doi.org/10.1039/C1JM12367J
10. Овчинников О.В., Cмирнов M.С., Асланов С.В., Перепелица А.С. Люминесцентные свойства коллоидных квантовых точек Ag2S для фотокаталитических приложений. Физика твердого тела. 2021;63(11): 1766-1773.
11. Овчинников О.В., Смирнов М.С., Перепелица А.С., Асланов С.В., Гуреев А.П., Попов В.Н., Цыбенко Ф. А., Хуссейн А.М.Х. Фотосенсибилизация активных форм кислорода наночастицами диоксида титана, декорированными квантовыми точками сульфида серебра Конденсированные среды и межфазные границы. 2022;24(4): 511–522. https://doi.org/10.17308/kcmf.2022.24/10555
12. Kubelka P., Munk F. An article on optics of paint layers. Fuer Tekn. Physik. 1931; 12: 593-609
13. Nosaka Y., Nosaka A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews. 2017;117: 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161
14. Mohanty J. G., Jaffe J. S., Schulman E. S., Raible D. G. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. Journal of Immunological Methods. 1997; 202(2): 133-141. https://doi.org/10.1016/S0022-1759(96)00244-X
15. Wafi A., Szabo-Bardos E., Horvath O., Mako E., Jakab M., Zsirka B. Coumarin-based quantification of hydroxyl radicals and other reactive species generated on excited nitrogen-doped TiO2. Journal of Photochemistry and Photobiology A: Chemistry. 2021; 404: 112913. https://doi.org/10.1016/j.jphotochem.2020.112913
16. Herman J., Neal S. L. Efficiency comparison of the imidazole plus RNO method for singlet oxygen detection in biorelevant solvents. Analytical and Bioanalytical Chemistry. 2019; 411(20): 5287-5296. doi: 10.1007/s00216-019-01910-2
17. Sadovnikov S.I., Kozhevnikova N.S., Pushin V.G., Rempel A.A. Microstructure of nanocrystalline PbS powders and films. Inorganic Materials. 2012;48: 21–27. https://doi.org/10.1134/S002016851201013X
18. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. – М. : Физматлит, 2005. – 416 с.
19. Садовников С.И., Ремпель А.А. Нестехиометрическое распределение атомов серы в структуре сульфида свинца. Доклады академии наук. 2009;428(1): 48–52.
Весь текст будет доступен после покупки