Личный кабинетuser
orange img orange img orange img orange img orange img
ДиссертацияРазное
Готовая работа №145874 от пользователя Успенская Ирина
book

Модели и алгоритмы оптимизации технических систем в контексте применения теории ограничений.

1 830 ₽
Файл с работой можно будет скачать в личном кабинете после покупки
like
Гарантия безопасной покупки
help

Сразу после покупки работы вы получите ссылку на скачивание файла.

Срок скачивания не ограничен по времени. Если работа не соответствует описанию у вас будет возможность отправить жалобу.

Гарантийный период 7 дней.

like
Уникальность текста выше 50%
help

Все загруженные работы имеют уникальность не менее 50% в общедоступной системе Антиплагиат.ру

file
Возможность снять с продажи
help

У покупателя есть возможность доплатить за снятие работы с продажи после покупки.

Например, если необходимо скрыть страницу с работой на сайте от третьих лиц на определенный срок.

Тариф можно выбрать на странице готовой работы после покупки.

Не подходит эта работа?
Укажите тему работы или свой e-mail, мы отправим подборку похожих работ
Нажимая на кнопку, вы соглашаетесь на обработку персональных данных

содержание

Введение............................................................................................................... 3
ГЛАВА 1. ТЕОРИЯ ОГРАНИЧЕНИЙ КАК СОВРЕМЕННЫЙ ПОДХОД К УПРАВЛЕНИЮ..........................................................................
8
1.1. Понятие и основные принципы теории ограничений............................... 8
1.2. Анализ существующих подходов к определению теории ограничений. 14
1.3. Рассмотрение теории ограничений в рамках специальных задач оптимизации систем............................................................................................
17
ГЛАВА 2. ФОРМАЛИЗАЦИЯ ЗАДАЧИ ТЕОРИИ ОГРАНИЧЕНИЙ: АВТОРСКИЙ ПОДХОД...................................................................................
27
2.1. Концептуальная схема базового алгоритма теории ограничений........... 27
2.2. Задача теории ограничений как специальная задача оптимизации......... 29
2.3.Типологизация задач теории ограничений................................................. 31
ГЛАВА 3. ОПЫТ ПРИМЕНЕНИЯ ТЕОРИИ ОГРАНИЧЕНИЙ К ЗАДАЧАМ РАЗЛИЧНОГО ТИПА.................................................................
38
3.1. Алгоритм и численная реализация применения теории ограничений к задачам линейного программирования.............................................................
38
3.2. Алгоритм применения теории ограничений к задачам нелинейного программирования...............................................................................................
45
3.3. Модельная демонстрация использования инструментов теории ограничений.........................................................................................................
49
Заключение........................................................................................................... 54
Список литературы.............................................................................................. 56

Весь текст будет доступен после покупки

ВВЕДЕНИЕ

В условиях функционирования современных технических систем, постоянного усложнения реализуемых в них бизнес-процессов и возрастания требований к используемым технологиям вопрос оптимизации технических систем приобретает весьма важное значение.
Инженерная деятельность с нарастающей частотой сталкивается с проблемой решения задач управления техническими системами с возможными ограничениями и «узкими местами», требующие быстрого устранения. Решение этих задач требует разработки математических моделей и алгоритмов эффективного обнаружения единичных, но критически значимых участков процесса («узких мест»), которые определяют успех и эффективность всей системы в целом. Кроме того, разработанные модели и алгоритмы могут быть применимы не только в конкретной прикладной области, но и обладать свойством общности для большого класса систем.

Весь текст будет доступен после покупки

отрывок из работы

ГЛАВА 1. ТЕОРИЯ ОГРАНИЧЕНИЙ КАК СОВРЕМЕННЫЙ ПОДХОД К УПРАВЛЕНИЮ
1.1. Понятие и основные принципы теории ограничений
Проблема оптимизации технических систем становится все более актуальной с развитием технологий. При работе со сложными техническими системами используются различные методы оптимизации, которые направлены на повышение эффективности системы, поиск лучших решений среди множества возможных и на улучшение производительности, надежности и устойчивости системы. При этом все методы можно классифицировать на математические (линейное и нелинейное программирование, метод градиентного спуска и т.д.), информационные (стохастические методы, методы машинного обучения) и экспериментальные (метод Гаусса-Зейделя, метод Бокса-Уилсона и т.д.) [39, с. 8].
Анализируя известные методы оптимизации систем, можно сделать вывод, что поиск лучшего результата зависит в большинстве случаев от набора различных параметров, которые только лишь могут учитывать ограничения. В действительности большинство реальных задач содержат ограничения. И наличие ограничений существенно влияет на получение решения оптимизационной задачи. В связи с этим можно предположить, что необходим метод оптимизации систем, который будет способен значительно улучшать результат используя и варьируя ограничениями.
Одним из методов, который концентрируется на ограничениях является теория ограничений систем. Данная теория популярна в менеджменте, ее преподают в бизнес-школах, а также ее применяют тысячи компаний и правительственных учреждений во всем мире. Теорию ограничений успешно используют в различных областях экономики, от промышленности до здравоохранения и образования [13, с. 4].
Теория ограничений системы (далее – ТОС) — это популярная концепция менеджмента, базирующаяся на поиске и управлении ключевым ограничением системы, которое предопределяет успех и эффективность всей системы в целом [14, 22]. ТОС подчеркивает кросс-функциональный и взаимозависимый характер процессов, рассматривая организацию как цепочку взаимозависимых функций, процессов, отделов или ресурсов, где различные входные данные преобразуются в различные продукты и услуги, которые при продаже становятся пропускной способностью.
Изначально ТОС применялась с позиции операционного менеджмента. И на практике представленная теория уже доказала свою эффективность в производстве, бизнесе и при управлении проектами, о чем свидетельствуют многочисленные примеры [14-16]. Так же следует отметить, что содержание данной теории в последнее время активно прорабатывается, и поэтому ТОС можно считать новой философией управления. При этом, представляется, что интегрировать данную теорию можно не только в деятельность организации, но и в управление любого рода системой, в том числе и технической.
Если рассматривать ТОС с позиции системного анализа, то можно отметить главное отличие от традиционных подходов – теория ограничений фокусируется не на локальной оптимизации отдельных элементов системы, а на устранении главного ограничения.

Весь текст будет доступен после покупки

Список литературы

1. Акимов К. Управление крупным промышленным предприятием с помощью теории ограничений [Электронный ресурс] // ТОС центр: здравый смысл решений. - 2007. – URL: http://www.toc-center.ru/library/ar-ticles/big_plant_on_TOC.html(дата обращения: 17.01.2025)
2. Андриевский Б.Р. Элементы математического моделирования в программных средах MATLAB 5 и Scilab/ Б.Р. Андриевский, А.Л. Фрадков. – СПб.: Наука, 2001. - 286 с.
3. Анкудинов Г.И. Математическая логика и теория алгоритмов: учеб. пособие/ Г.И. Анкудинов, И.Г. Анкудинов, О.А. Петухов. – СПб.: СЗТУ, 2003. - 104 с.
4. Анфилатов В.С., Емельянов А.А., Кукушкин А.А. Системный анализ в управлении. – М.: Финансы и статистика, 2009. - 368 с.
5. Бахвалов Н. С. Численные методы [Электронный ресурс] / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. — 8-е изд. (эл.). — Электрон. текстовые дан. (1 файл pdf : 639 с.). — М. : БИНОМ. Лаборатория знаний, 2015.
6. Бобков С.П., Астраханцева И.А., Галиаскаров Э.Г. Применение системного подхода при разработке математических моделей. Современные наукоемкие технологии. Региональное приложение. 2021. N 1(65). С. 66-71. DOI: 10.6060/snt20216501.0008.

Весь текст будет доступен после покупки

Почему студенты выбирают наш сервис?

Купить готовую работу сейчас
service icon
Работаем круглосуточно
24 часа в сутки
7 дней в неделю
service icon
Гарантия
Возврат средств в случае проблем с купленной готовой работой
service icon
Мы лидеры
LeWork является лидером по количеству опубликованных материалов для студентов
Купить готовую работу сейчас

не подошла эта работа?

В нашей базе 78761 курсовых работ – поможем найти подходящую

Ответы на часто задаваемые вопросы

Чтобы оплатить заказ на сайте, необходимо сначала пополнить баланс на этой странице - https://lework.net/addbalance

На странице пополнения баланса у вас будет возможность выбрать способ оплаты - банковская карта, электронный кошелек или другой способ.

После пополнения баланса на сайте, необходимо перейти на страницу заказа и завершить покупку, нажав соответствующую кнопку.

Если у вас возникли проблемы при пополнении баланса на сайте или остались вопросы по оплате заказа, напишите нам на support@lework.net. Мы обязательно вам поможем! 

Да, покупка готовой работы на сайте происходит через "безопасную сделку". Покупатель и Продавец финансово защищены от недобросовестных пользователей. Гарантийный срок составляет 7 дней со дня покупки готовой работы. В течение этого времени покупатель имеет право подать жалобу на странице готовой работы, если купленная работа не соответствует описанию на сайте. Рассмотрение жалобы занимает от 3 до 5 рабочих дней. 

У покупателя есть возможность снять готовую работу с продажи на сайте. Например, если необходимо скрыть страницу с работой от третьих лиц на определенный срок. Тариф можно выбрать на странице готовой работы после покупки.

Гарантийный срок составляет 7 дней со дня покупки готовой работы. В течение этого времени покупатель имеет право подать жалобу на странице готовой работы, если купленная работа не соответствует описанию на сайте. Рассмотрение жалобы занимает от 3 до 5 рабочих дней. Если администрация сайта принимает решение о возврате денежных средств, то покупатель получает уведомление в личном кабинете и на электронную почту о возврате. Средства можно потратить на покупку другой готовой работы или вывести с сайта на банковскую карту. Вывод средств можно оформить в личном кабинете, заполнив соответствущую форму.

Мы с радостью ответим на ваши вопросы по электронной почте support@lework.net

surpize-icon

Работы с похожей тематикой

stars-icon
arrowarrow

Не удалось найти материал или возникли вопросы?

Свяжитесь с нами, мы постараемся вам помочь!
Неккоректно введен e-mail
Нажимая на кнопку, вы соглашаетесь на обработку персональных данных