1. S. Yahia, Y. Meraihi, A. Ramdane-Cherif, A. B. Gabis, D. Acheli, and H. Guan, “A survey of channel modeling techniques for visible light communications,” J. Netw. Comput. Appl., vol. 194, Nov. 2021, Art. no. 103206.
2. T. V. Nguyen, H. D. Le, T. V. Pham, and A. T. Pham, “Link availability of satellite-based FSO communications in the presence of clouds and turbulence,” IEICE Commun. Exp., vol. 10, no. 5, pp. 206–211, 2021.
3. F. A. Miranda et al., “An overview of key optical communications technologies under development at the NASA Glenn Research Center,” in Proc. Opt. Interconnects XXI, vol. 11692, 2021, pp. 130–144.
4. S. A. H. Mohsan and H. Amjad, “A comprehensive survey on hybrid wireless networks: Practical considerations, challenges, applications and research directions,” Opt. Quantum Electron., vol. 53, no. 9, pp. 1–56, 2021.
5. M. F. Ali, D. N. K. Jayakody, and Y. Li, “Recent trends in underwater visible light communication (UVLC) systems,” IEEE Access, vol. 10, pp. 22169–22225, 2022.
6. P. A. Hoeher, J. Sticklus, and A. Harlakin, “Underwater optical wireless communications in swarm robotics: A tutorial,” IEEE Commun. Surveys Tuts., vol. 23, no. 4, pp. 2630–2659, 4th Quart., 2021.
7. M. F. Ali, D. N. K. Jayakody, Y. A. Chursin, S. Affes, S. Dmitry. Recent advances and future directions on underwater wireless communications. Arch. Comput. Methods Eng., vol. 27, no. 100, pp. 1379–1412, 2020.
8. K. Ye, C. Zou, and F. Yang, “Dual-hop underwater optical wireless communication system with simultaneous Lightwave information and power transfer,” IEEE Photon. J., vol. 13, no. 6, pp. 1–7, Dec. 2021.
9. X. Sun et al., “A review on practical considerations and solutions in underwater wireless optical communication,” J. Lightw. Technol., vol. 38, no. 2, pp. 421–431, Jan. 15, 2020.
10. S. Ghasvarianjahromi, M. Karbalayghareh, P. D. Diamantoulakis, G. K. Karagiannidis, and M. Uysal, “Simultaneous lightwave information and power transfer in underwater visible light communications,” in Proc. IEEE 30th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), 2019, pp. 1–6.
11. N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Localization of energy harvesting empowered underwater optical wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 18, no. 5, pp. 2652–2663, May 2019.
12. N. Saeed, A. Celik, M.-S. Alouini, and T. Y. Al-Naffouri, “Analysis of 3D localization in underwater optical wireless networks with uncertain anchor positions,” Sci. China Inf. Sci., vol. 63, no. 10, pp. 1–8, 2020.
13. A. Ismail, X. Wang, A. Hawbani, S. Alsamhi, S. A. Aziz. Routing protocols classification for underwater wireless sensor networks based on localization and mobility. Wireless Netw., vol. 28, pp. 797–826, Jan. 2022.
14. M. Erol-Kantarci, H. T. Mouftah, and S. Oktug, “A survey of architectures and localization techniques for underwater acoustic sensor networks,” IEEE Commun. Surveys Tuts., vol. 13, no. 3, pp. 487–502, 3rd Quart., 2011.
15. F. Akhoundi, A. Minoofar, and J. A. Salehi, “Underwater positioning system based on cellular underwater wireless optical CDMA networks,” in Proc. 26th Wireless Opt. Commun. Conf. (WOCC), 2017, pp. 1–3.
16. L. Zhang, K. Wang, J. Li, J. Qi, and S. Tang, “An experimental system for underwater audio communication based on visible light,” in Proc. 6th Int. Conf. Intell. Comput. Signal Process. (ICSP), 2021, pp. 507–510.
17. F. Wang, “Research on seawater laser communication channel based on visible light,” in Proc. IEEE Asia-Pacific Conf. Image Process. Electron. Comput. (IPEC), 2021, pp. 1141–1143.
18. A. Al-Kinani, C.-X. Wang, L. Zhou, and W. Zhang. Optical wireless communication channel measurements and models. IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 1939–1962, 3rd Quart., 2018.
19. H. G. Sandalidis, A. Vavoulas, T. A. Tsiftsis, and N. Vaiopoulos, “Illumination, data transmission, and energy harvesting: The threefold advantage of VLC,” Appl. Opt., vol. 56, no. 12, pp. 3421–3427, 2017.
20. G. Xu and Z. Song, “Performance analysis for mixed ?-? fading and M-distribution dual-hop radio frequency/free space optical communication systems,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1517–1528, Mar. 2021.
21. M. C. Gokce, “Aperture averaged scintillation of Gaussian beam in strong oceanic turbulence,” Gazi Univ. J. Sci., vol. 34, no. 1, pp. 100–110, 2021.
22. R. Cai, M. Zhang, D. Dai, Y. Shi, and S. Gao, “Analysis of the underwater wireless optical communication channel based on a comprehensive multipara meter model,” Appl. Sci., vol. 11, no. 13, p. 6051, 2021.
23. H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access, vol. 4, pp. 1518–1547, 2016.
24. I. N’doye, D. Zhang, M.-S. Alouini, and T.-M. Laleg-Kirati, “Establishing and maintaining a reliable optical wireless communicationin underwater environment,” IEEE Access, vol. 9, pp. 62519–62531, 2021.
25. B. K. Levidala, P. N. Ramavath, and P. Krishnan, “Performance enhancement using multiple input multiple output in dual-hop convergent underwater wireless optical communication–free-space optical communication system under strong turbulence with pointing errors,” Opt. Eng., vol. 60, no. 10, 2021, Art. no. 106106.
26. M. Elamassie, M. Uysal, Y. Baykal, M. Abdallah, and K. Qaraqe, “Effect of eddy diffusivity ratio on underwater optical scintillation index,” J.Opt. Soc. America A, vol. 34, no. 11, pp. 1969–1973, 2017.
27. P. N. Ramavath, S. A. Udupi, and P. Krishnan, “Co-operative RFUWOC link performance over hyperbolic tangent log-normal distribution channel with pointing errors,” Opt. Commun., vol. 469, Aug. 2020, Art. no. 125774.
28. E. Illi, F. El Bouanani, and F. Ayoub, “On the performance of mixed FSO-UOWC communication system with the presence of pointing error,” in Proc. 2nd Int. Conf. Smart Digit. Environ., 2018, pp. 112–118.
29. K. O. Odeyemi, P. A. Owolawi, and O. O. Olakanmi, “Performance analysis of reconfigurable intelligent surface assisted underwater optical communication system,” Progr. Electromagn. Res., vol. 98, pp. 101–111, Nov. 2020.
Весь текст будет доступен после покупки