Личный кабинетuser
orange img orange img orange img orange img orange img
Курсовая работаПедагогика
Готовая работа №14057 от пользователя Валеева Карина
book

МЕТОДИКА ИЗУЧЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

580 ₽
Файл с работой можно будет скачать в личном кабинете после покупки
like
Гарантия безопасной покупки
help

Сразу после покупки работы вы получите ссылку на скачивание файла.

Срок скачивания не ограничен по времени. Если работа не соответствует описанию у вас будет возможность отправить жалобу.

Гарантийный период 7 дней.

like
Уникальность текста выше 50%
help

Все загруженные работы имеют уникальность не менее 50% в общедоступной системе Антиплагиат.ру

file
Возможность снять с продажи
help

У покупателя есть возможность доплатить за снятие работы с продажи после покупки.

Например, если необходимо скрыть страницу с работой на сайте от третьих лиц на определенный срок.

Тариф можно выбрать на странице готовой работы после покупки.

Не подходит эта работа?
Укажите тему работы или свой e-mail, мы отправим подборку похожих работ
Нажимая на кнопку, вы соглашаетесь на обработку персональных данных

содержание

Введение…………………………………………………………………………..3
Глава I. Тригонометрические функции, их свойства и графики.......................5
1.1. Определение, свойства и графики функций синуса и косинуса.................5
1.2. Определение, свойства и графики функций тангенса и котангенса……...9
Глава II. Методические особенности изучения темы «Тригонометрические функции» .............................................................................................................12
2.1. Анализ изложения темы «Тригонометрические функции» в различных школьных учебниках ………………..………………………………………...12
2.2. Проектирование уроков по теме «Тригонометрические функции»…....21
Заключение……………………………………………………………………..37
Литература ....................................................................................................38


Весь текст будет доступен после покупки

ВВЕДЕНИЕ

В древности тригонометрия возникла в связи с потребностями астрономии, землемерия и строительного дела, то есть носила чисто геометрический характер и представляла главным образом «исчисление хорд». Со временем в нее начали вкрапляться некоторые аналитические моменты. В первой половине 18-го века произошел резкий перелом, после чего тригонометрия приняла новое направление и сместилась в сторону математического анализа. Именно в это время тригонометрические зависимости стали рассматриваться как функции. Это имеет не только математико-исторический, но и методико-педагогический интерес.
В настоящее время изучению тригонометрических функций именно как функций числового аргумента уделяется большое внимание в школьном курсе алгебры и начал анализа. Существует несколько различных подходов к преподаванию данной темы в школьном курсе, и учитель, особенно начинающий, легко может запутаться в том, какой подход является наиболее подходящим. А ведь тригонометрические функции представляют собой наиболее удобное и наглядное средство для изучения всех свойств функций (до применения производной), а в особенности такого свойства многих природных процессов как периодичность. Поэтому их изучению следует уделить пристальное внимание. Все вышесказанное и обуславливает актуальность выбора темы для данной исследовательской работы.
Объектом исследования является процесс обучения алгебре и началам анализа в старших классах.
Предмет исследования – процесс изучения тригонометрических функций в курсе алгебры и начал анализа в 10-11 классе.
Целькурсовой работы заключается в рассмотрении методики изучения тригонометрических функций в 10-11 классах.
Для осуществления обозначенной цели служат следующиезадачи:
1. Рассмотреть определения, свойства и графики тригонометрических функций
2. Провести анализ изложения темы «Тригонометрические функции» в различных школьных учебниках
3. Спроектировать уроки математики по теме «Тригонометрические функции» в 10 классе.

Весь текст будет доступен после покупки

отрывок из работы

Глава 1. Тригонометрические функции, их свойства и графики
Определение, свойства и графики функций синуса и косинуса
Определение. Если точка М числовой окружности (Рис.1) соответствует числу t, то абсциссу точки М называют косинусом числа t и обозначают cos t, а ординату точки М называют синусом числа t и обозначают sin t [16].

Рис.1
Точки, расположенные в I четверти, имеют положительные абсциссу и ординату. Следовательно, если ? — угол I четверти, то sin??>0,cos??>0.
Если а — угол II четверти, то sin а > 0, cos а < 0.
Если а — угол III четверти, то sin а < 0, cos а < 0.
Если а — угол IV четверти, то sin а < 0, cos а > 0.
Рассмотрим функцию: y = sin x
Основные свойства этой функции:
1) Область определения – множество R действительных чисел ( D(x)=R);
2) Область значений E(y) = [-1;1];
3) Функция нечетная sin??(-x)= -sin?x ?;
4) Функция y =sin x возрастает на отрезке [ 0; ?/2] и убывает на отрезке [?/2; ?].

Весь текст будет доступен после покупки

Список литературы

1. Алексеев, А. Тригонометрические подстановки [Текст] / Алексеев А., Курляндчик Л. // Квант. – 1995. - №2. –с. 40 – 42.
2. Алимов, Ш.А. Алгебра и начала анализа 10-11[Текст] / Ш.А. Алимов // Учебник - Москва: Просвещение, 2001.
3. Башмаков, Алгебра и начала анализа 10-11 [Текст] /Башмаков //Учебник - Москва: Просвещение, 1992.
4. Бескин, Н.М. Вопросы тригонометрии и ее преподавания [Текст] / Бескин Н.М. - Москва: Учпедгиз, 1950.
5. Гилемханов, Р.Г. О преподавании тригонометрии в 10 классе по курсу В [Текст] / Гилемханов Р.Г. //Математика в школе. 2001-№ 6 -с. 26-28.
6. Горнштейн, П.И. Тригонометрия помогает алгебре [Текст] / Горнштейн П.И. // Квант. 1989-№5 – с. 68-70.
7. Дорофеев, Г. Периодичность и не периодичность функций [Текст] / Дорофеев Г., Розов Н. //Квант. 1977- №1- с.43-48.
8. Зарецкий, В.И. Изучение тригонометрических функций в средней школе [Текст] / Зарецкий В.И. - Минск: Народная асвета, 1970.
9. Земляков, А. Периодические функции [Текст] / Земляков А., Ивлев Б. // Квант. 1976-№12- с. 34-39.

Весь текст будет доступен после покупки

Почему студенты выбирают наш сервис?

Купить готовую работу сейчас
service icon
Работаем круглосуточно
24 часа в сутки
7 дней в неделю
service icon
Гарантия
Возврат средств в случае проблем с купленной готовой работой
service icon
Мы лидеры
LeWork является лидером по количеству опубликованных материалов для студентов
Купить готовую работу сейчас

не подошла эта работа?

В нашей базе 78761 курсовых работ – поможем найти подходящую

Ответы на часто задаваемые вопросы

Чтобы оплатить заказ на сайте, необходимо сначала пополнить баланс на этой странице - https://lework.net/addbalance

На странице пополнения баланса у вас будет возможность выбрать способ оплаты - банковская карта, электронный кошелек или другой способ.

После пополнения баланса на сайте, необходимо перейти на страницу заказа и завершить покупку, нажав соответствующую кнопку.

Если у вас возникли проблемы при пополнении баланса на сайте или остались вопросы по оплате заказа, напишите нам на support@lework.net. Мы обязательно вам поможем! 

Да, покупка готовой работы на сайте происходит через "безопасную сделку". Покупатель и Продавец финансово защищены от недобросовестных пользователей. Гарантийный срок составляет 7 дней со дня покупки готовой работы. В течение этого времени покупатель имеет право подать жалобу на странице готовой работы, если купленная работа не соответствует описанию на сайте. Рассмотрение жалобы занимает от 3 до 5 рабочих дней. 

У покупателя есть возможность снять готовую работу с продажи на сайте. Например, если необходимо скрыть страницу с работой от третьих лиц на определенный срок. Тариф можно выбрать на странице готовой работы после покупки.

Гарантийный срок составляет 7 дней со дня покупки готовой работы. В течение этого времени покупатель имеет право подать жалобу на странице готовой работы, если купленная работа не соответствует описанию на сайте. Рассмотрение жалобы занимает от 3 до 5 рабочих дней. Если администрация сайта принимает решение о возврате денежных средств, то покупатель получает уведомление в личном кабинете и на электронную почту о возврате. Средства можно потратить на покупку другой готовой работы или вывести с сайта на банковскую карту. Вывод средств можно оформить в личном кабинете, заполнив соответствущую форму.

Мы с радостью ответим на ваши вопросы по электронной почте support@lework.net

surpize-icon

Работы с похожей тематикой

stars-icon
arrowarrow

Не удалось найти материал или возникли вопросы?

Свяжитесь с нами, мы постараемся вам помочь!
Неккоректно введен e-mail
Нажимая на кнопку, вы соглашаетесь на обработку персональных данных