1 Айдын Ю. А. Выделение и характеристика эффективного штамма-продуцента бактериальной целлюлозы во взбалтываемой культуре: Gluconacetobacter hansenii P2A / Айдын Ю.А., Аксой Н.Д. и др. // Приложение Микробиол Биотехнология. – 2014. – № 82. – С. 1065-1075. Текст: непосредственный.
2 Алави М. Обзор антимикробных и ранозаживляющих свойств нанобиопленок ZnO, гидрогелей и бионанокомпозитов на основе целлюлозы, хитозана и альгинатных полимеров // Алави М., Ноходчи А. и др. / Углеводород. Полимеры. – 2020. – № 227. – С. 1-6. Текст: непосредственный.
3 Атва Н.А. Улучшение производства бактериальной целлюлозы с использованием Gluconacetobacter xylinus ATCC 10245 и характеристика полученных целлюлозных пленок / Атва Н.А., Нагва А.А., Эль-Дивани А.Л. и др. // Египетский фармацевтический журнал. – 2015. – № 65. – С. 123-129. Текст: непосредственный.
4 Браун-младший Р. М. Биосинтез целлюлозы: модель для понимания сборки биополимеров / Браун-младший Р. М., Саксена И. М. и др. // Физиол. биохимия растений. – 2000. – № 38. – С. 57-67. Текст: непосредственный.
5 Волова Т. Г. Штамм бактерии komagataeibacter xylinus – продуцент бактериальной целлюлозы / Прудникова С. В., Шишацкая Е. И. и др. // Египетский фармацевтический журнал. – 2015. – № 65. – С. 11. Текст: непосредственный.
6 Ревин В. В. Получение бактериальной целлюлозы и
нанокомпозиционных материалов : монография / В. В. Ревин, Е. В. Лияськина, Н. А. Пестов. – Саранск : Изд-во Мордов. ун-та, 2014. – 128 с.
7 Ревин В. В. Разработка перспективных функциональных и конструкционных биокомпозиционных материалов на основе микробных полисахаридов. / В. В. Ревин, Д. А. Кадималиев, Н. А. Пестов [и др.]; под ред. М. М. Силантьевой. // Биотехнология и общество в XXI веке : сборник статей. – Барнаул : Изд-во Алт. ун-та, 2018. – С. 319-323.
8 Ревина Н. В. Раневые покрытия на основе бактериальной целлюлозы для регенерационных процессов / Н. В. Ревина, Е. В. Лияськина, С. В. Костин // Гены и клетки. – 2017. – Т.12, №3. – С. 147-148.
9 Штамм Gluconacetobacter sucrofermentans – продуцент бактериальной целлюлозы : пат. 2523606 Рос. Федерация : C 12 N 1/20, C 12 P 19/04, C 12 R 1/01 / В. В. Ревин, Е. В. Лияськина ; патентообладатели ФГБОУ ВО «МГУ им. Н. П. Огарёва, ООО «Наука-Сервис С». – № 2013111072/10 ; заявл. 12.03.2013 ; опубл. 27.05.2014, Бюл. № 20. – 6 с.
10 Abasalizadeh F. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting / F. Abasalizadeh, S. V. Moghaddam, E. Alizadeh // Journal of Biological Engineering. – 2020. – Vol. 14. – P. 1-22.
11 Ahmed E. M. Hydrogel: preparation, characterization, and applications: a review / E. M. Ahmed // Journal of Advanced Research. – 2015. – Vol. 6. – P. 105121.
12 Alam M. N. Sustainable Production of Cellulose-Based Hydrogels with Superb Absorbing Potential in Physiological Saline / M. N. Alam, M. S. Islam, L. P. Christopher // ACS Omega. – 2019. – Vol. 4. – P. 9419-9426.
13 Birk S. E. Microcontainer Delivery of Antibiotic Improves Treatment of Pseudomonas aeruginosa Biofilms / S. E. Birk, J. A. J. Haagensen, H. K. Johansen [et al.] // Advanced Healthcare Materials. – Vol. 9, Iss. 10. – 2020. – P. 1-10.
14 Bokkhim H. In-vitro digestion of different forms of bovine lactoferrin encapsulated in alginate micro-gel particles / H. Bokkhim, N. Bansal, L. Grоndahl [et al.] // Food Hydrocolloids. – 2016. – Vol. 52. – P. 231-242.
15 Cakar F. Improvement production of bacterial cellulose by semi-continuous process in molasses medium / F. Cakar, I. Ozer, A. O. Aytekin, F. Sahin // Carbohydr. Polym. – 2014. – Vol. 106, Iss. 1. – P. 1-13.
16 Campano C. Enhancement of the fermentation process and properties of bacterial cellulose: a review / C. Campano, A. Balea, A. Blanco, C. Negro // Cellulose. – 2016. – Vol. 23, Iss. 1. – P. 57-91.
17 Casiraghi A. Mucoadhesive Budesonide Formulation for the Treatment of Eosinophilic Esophagitis / A. Casiraghi, C. G. Gennari, U. M. Musazzi // Pharmaceutics. – 2020. – Vol. 12. – P. 1-12.
18 Chen Q. Recent advances in polysaccharides for osteoarthritis therapy / Q. Chen, X. Shao, P. Ling [et al.] // European Journal of Medicinal Chemistry. – 2017. – Vol. 139. – P. 926-935.
19 Ciolacu D. Amorphous cellulose – structure and characterization / D. Ciolacu, F. Ciolacu, V. I. Popa // Cellulose chemistry and technology. – 2011. – Vol. 45, Iss.1. – P.13-21.
20 Curbete M. M. A Critical Review of the Properties of Fusidic Acid and Analytical Methods for Its Determination / M. M. Curbete, H. R. N. Salgado // Critical Reviews in Analytical Chemistry. – 2015. – Vol. 46. – P. 352-360.
21 Das N. Biodegradable hydrogels for controlled drug delivery / N. Das // Cellulose-based superabsorbent hydrogels. – 2018. – P. 1433-1473.
22 Dhawan A. Alginate microencapsulated human hepatocytes for the treatment of acute liver failure in children / A. Dhawan, N. Chaijitraruch, E. Fitzpatrick [et al.] // Journal of Hepatology. – 2019. – Vol. 72, Iss. 5. – P. 1-36.
23 Dong S. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting / S. Dong, H.J. Cho, Y.W. Lee [et al.] // Biomacromolecules. – 2014. – Vol. 15. – P.1560-1567.
24 Draget K. I. Chemical, physical and biological properties of alginates and their biomedical implications / K. I. Draget, C. Taylor // Food Hydrocolloids. – 2011. – Vol. 25. – P. 251-256.
25 Dutta S. D. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering // S. D. Dutta, D. K. Patel, K. T. Lim // Journal of Biological Engineering. – 2019. – Vol. 13, Iss. 55. – P. 1-19.
26 Fischer M. Microbial alginate dressings show improved binding capacity for pathophysiological factors in chronic wounds compared to commercial alginate dressings of marine origin / M. Fischer, F. Gebhard, T. Hammer [et al.] // Journal of Biomaterials Applications. – 2017. – Vol. 31, Iss. 9. – P. 1267-1276.
27 Fu L. H. Multifunctional Cellulose-based Hydrogels for Biomedical Applications / L. H. Fu, C. Qi, M. G. Ma [et al.] // Journal of Materials Chemistry B. – 2019. – Vol. 7. – P. 1-22.
28 Gorgieva S. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications / S. Gorgieva, J. Trcek // Nanomaterials. – 2019. – Vol. 9. – P. 1-20.
29 Gutierrez E. 3D Printing of Antimicrobial Alginate/Bacterial-Cellulose
Composite Hydrogels by Incorporating Copper Nanostructures / E. Gutierrez, P. A. Burdiles, F. Quero [et al.] // ACS Biomaterials Science and Engineering. – 2019.
– Vol. 5, Iss. 11. – P. 6290-6299.
30 Hay I. D. Bacterial biosynthesis of alginates / I. D. Hay, Z. U. Rehman, A. Ghafoor // J. Chem. Technol. Biotechnol. – 2010. – Vol. 85. – P. 752-759.
31 Hubbe M. A. Review of the Mechanistic Roles of Nanocellulose, Cellulosic Fibers, and Hydrophilic Cellulose Derivatives in Cellulose-Based Absorbents / M. A. Hubbe // Cellulose-Based Superabsorbent Hydrogels. – 2018. – P. 123-155.
32 Jung S. Effect of Gellan Gum / Tuna Skin Film in Guided Bone Regeneration in Artificial Bone Defect in Rabbit Calvaria / S. Jung, H. K. Oh, M. S. Kim [et al.] // Materials. – 2020. – Vol. 13. – P. 1-9.
33 Kabir S. M. F. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications / S. M. F. Kabir, P. P. Sikdar, B. Haque [et al.] // Progress in Biomaterials. – 2018. – Vol. 7. – P. 153-174.
34 Karimian A. Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems / A. Karimian, H. Parsian, M. Majidinia, [et al.] // International Journal of Biological Macromolecules. – 2019. – Vol. 125. – P. 125-138.
35 Kim J. H. Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization / J. H. Kim, S. Park, H. Kim [et al.] // Carbohydrate Polymers. – 2017. – Vol. 157. – P. 137-145.
36 Kolaczkowska M. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant /
M. Kolaczkowska, P. Siondalski, M. M. Kowalik, [et al.] // Materials Science & Engineering C. – 2018. – Vol. 18. – P. 1-28.
37 Laradji A. Bioinspired Thermosensitive Hydrogel as a Vitreous Substitute: Synthesis, Properties, and Progress of Animal Studies / A. Laradji, Y. B. Shui, B. B. Karakocak // Materials. – 2020. – Vol. 13. – P. 1-14.
38 Lin Q. H. Preparation and characteristic of a sodium
alginate/carboxymethylated bacterial cellulose composite with a crosslinking semiinterpenetrating network / Q. H. Lin, Y. D. Zheng, L. L. Ren [et al.] // Journal Appl. Polym. Sci. – 2014. – Vol. 131. – P. 15-19.
39 Liua R. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers / R. Liua, L. Daia, C. Sia [et al.] // Carbohydrate Polymers. – 2018. – Vol. 195. – P. 63-70.
40 Liyaskina E. Bacterial cellulose / alginate nanocomposite for antimicrobial wound dressing / E. Liyaskina, V. Revin, E. Paramonova [et al.] // KnE Energy & Physics. – 2018. – P. 202-211.
41 Liyaskina E. Nanomaterials from bacterial cellulose for antimicrobial wound dressing / E. Liyaskina, V. Revin, E. Paramonova [et al.] // Journal of Physics:
Conference Series. – 2017. – Vol. 784, Iss. 1. – P. 1-7.
42 McCarthy R. R. The use of bacterial polysaccharides in bioprinting / R. R. McCarthya, M. W. Ullahb, P. Boothc [et al.] // Biotechnology Advances. – 2019. – Vol. 37. – P. 1-14.
43 Meza-Contreras J. C. XRD and solid state 13 C-NMR evaluation of the crystallinity enhancement of 13 C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses
/ J. C. Meza-Contreras, R. Manriquez-Gonzalez, J. A. Gutierrez-Ortega [et al.] // Carbohydrate Research. – 2018. – Vol. 461. – P. 51-59.
44 Mohamad N. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model / N. Mohamad, M. C. Mohd Amin, M. Pandey [et al.] // Carbohydrate Polymers. – 2014.
– Vol. 114. – P. 312-320.
45 Molina-Ramirez C. Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis / C. Molina-Ramirez, M. Castro, M. Osorio [et al.] // Materials. – 2017. – Vol. 10. – P. 1-13.
46 Nooshabadi V. T. Impact of exosome loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model / V. T. Nooshabadi, M. Khanmohamadi, E. Valipour [et al.] // Journal of biomedical materials research. – 2020. – P. 1-32.
47 Pal S. Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications / S. Pal, R. Nisi, M. Stoppa, A. Licciulli // ACS Omega. – 2017. – Vol. 2. – P. 3632-3639.
48 Pavaloiu R. D. Swelling studies of composite hydrogels based on bacterial cellulose and gelatin / R. D. Pavaloiu, A. Stoica-Guzun, T. Dobre // Chemistry and Materials Science. – 2015. – Vol. 77. – P. 53-62.
49 Picheth G. F. Bacterial cellulose in biomedical applications: A review / G. F. Picheth, C. L. Pirich, M. R. Sierakowski [et al.] // International Journal of Biological Macromolecules. – 2017. – Vol. 104. – P. 97-106.
50 Portela R. Bacterial cellulose: a versatile biopolymer for wound dressing applications / R. Portela, C. R. Leal, P. L. Almeida [et al.] // Microbial Biotechnology. – 2019. – Vol. 612. – P. 1-25.
51 Qiao K. Hydrophilic nanofiber of bacterial cellulose guided the changes in the micro-structure and mechanical properties of nf-BC / PVA composites hydrogels / K. Qiao, Y. D. Zheng, S. L. Guo [et al.] // Compos. Sci. Technol. – 2015. – Vol. 118. – P. 47-54.
Весь текст будет доступен после покупки