Площадь – геометрическое понятие. Зарождение геометрических знаний, связанных с измерением площадей, теряется в глубине тысячелетий.
Еще 4 - 5 тыс. лет назад вавилоняне вычисляли площади земельных участков, имеющих форму прямоугольника и трапеции, в квадратных единицах. Единицей измерения площади издревле использовали квадрат, так как именно квадрат обладает замечательными свойствами:
-равные стороны, равные и прямые углы;
-квадрат имеет ось и центр симметрии и совершенство формы.
Квадраты легко строить, и ими можно покрыть без просветов фигуры любой формы. Около 4 000 лет назад египтяне определяли площадь прямоугольника, параллелограмма, треугольника и трапеции теми же приемами, как и мы. То есть, чтобы определить площадь прямоугольника, умножали длину на ширину; чтобы найти площадь треугольника, основание треугольника делили пополам и умножали на высоту. А для нахождения площади трапеции сумму параллельных сторон делили пополам и умножали на высоту. Площадь многоугольника находили разбиением его на прямоугольники, треугольники и трапеции.
Египтяне использовали и иные, которые позволяли быстрее измерять площадь земельного участка путем только обхода его по границам, но результат измерения получался с некоторой погрешностью. Так, площадь равнобедренного треугольника вычисляли по формулам. При вычислении площади четырехугольников по этой формуле допускалась ошибка. А в случае параллелограмма эта формула дает ощутимую погрешность.
В математических трудах Евклида, Герона, Брахмагупты и других известно, что по вопросам измерения площадей греки и индусы пошли далеко вперед по сравнению с египтянами и вавилонянами. В своих «Началах» Евклид не применял слово «площадь», так как он под словом «фигура» понимает часть плоскости, ограниченную той или иной замкнутой линией, и под понятием фигуры подразумевал и ее площадь. Евклид результат измерения площади не выражает числом, сравнивает площади различных фигур между собой. Евклид также занимается вопросами превращения одних фигур в равновеликие им фигуры, оперируя при этом не числами, а самими площадями. С формулой Герона S= р(р-а)(р-b)(р-с), где р=а+b+с учащиеся знакомы. А индийский математик Брахмагупта (598 - 660) хотел вывести подобную формулу для вычисления площади четырехугольника. Если обозначим площадь четырехугольника через S, его полупериметр через р, а стороны - через а, b, с и d, то Брахмагупта принимал S= р(р-а)(р-b)(р-с)(р-d), но не доказал. Формула Брахмагупта верна для прямоугольника, так как только в прямоугольниках р-а=b и р-b=а. Поэтому
S= р(р-а)(р-b)(р-с)(р-d)= (р-а)2(р-b)2=(р-а)(р-b)
так как а=с, b=d. Так как р-а=b, р-b=а, то получим S=аb.
Формула Брахмагупта верна не для любого четырехугольника. Она применима для равнобедренной трапеции и для вписанных в круг четырехугольников, диагонали которых взаимно перпендикулярны. Сам Брахмагупта был осторожен в применении своей формулы и пользовался ею только для определения площадей выше указанных фигур. Его формула, хоть и давала лишь приближенное значение истинного размера площади любого четырехугольника, облегчала измерение площадей земельных участков, так как обход участка по периметру и его измерение - задача несложная.
Весь текст будет доступен после покупки