Личный кабинетuser
orange img orange img orange img orange img orange img
Дипломная работаПедагогика
Готовая работа №55035 от пользователя Успенская Ирина
book

Применение физических моделей при изучении интеграла в школьном курсе математики

1 175 ₽
Файл с работой можно будет скачать в личном кабинете после покупки
like
Гарантия безопасной покупки
help

Сразу после покупки работы вы получите ссылку на скачивание файла.

Срок скачивания не ограничен по времени. Если работа не соответствует описанию у вас будет возможность отправить жалобу.

Гарантийный период 7 дней.

like
Уникальность текста выше 50%
help

Все загруженные работы имеют уникальность не менее 50% в общедоступной системе Антиплагиат.ру

file
Возможность снять с продажи
help

У покупателя есть возможность доплатить за снятие работы с продажи после покупки.

Например, если необходимо скрыть страницу с работой на сайте от третьих лиц на определенный срок.

Тариф можно выбрать на странице готовой работы после покупки.

Не подходит эта работа?
Укажите тему работы или свой e-mail, мы отправим подборку похожих работ
Нажимая на кнопку, вы соглашаетесь на обработку персональных данных

содержание


Введение____________________________________________________ 3
Глава 1.Теоретические основы изучения темы «Интеграл» с помощью моделей______________________________________________________ 6
1.1 Модели и моделирование в обучении______________________________________________________6
1.2 Психолого-педагогические и методические основы изучения интеграла в школьном курсе математики __________________________ 8
1.3 Анализ школьных учебников алгебры и начал анализа_______________________________________________________10
1.4 Физические модели при введении понятия интеграла ____________14
1.5 Различные методы изучения приложений интеграла в физике _____17
Глава 2. Физические модели при изучении темы «Интеграл» ________ 22
2.1 Введение понятия интеграла с помощью физических моделей_____ 22
2.2 Изучение свойств определенного интеграла с помощью физических моделей______________________________________________________ 26
2.3 Физические модели при отработке техники интегрирования_______31
2.4 Приложения интеграла в физике_____________________________34
Заключение __________________________________________________ 37
Литература __________________________________________________ 40
Приложение__________________________________________________ 42

Весь текст будет доступен после покупки

ВВЕДЕНИЕ

Как известно, эффективному обучению во многом способствует решение задач с практическим содержанием. Потребность в использовании практических материалов при обучении школьников математике диктуется тем, что возникновение, формирование и развитие математических понятий имеют своим источником ощущения и восприятия, а также и тем, что в познавательной деятельности учащегося имеет место тесная связь логических процессов мышления и чувственных восприятий. Поэтому обращение к примерам из жизни, окружающей обстановке облегчает учителю возможность организовать учебную деятельность учащихся и поддерживать их интерес к обучению. В то же время, бурное развитие математики и физики не могло не наложить определенного отпечатка на уровень развития и направление интересов учащихся. Интерес молодежи к технике, физике и математике растет с каждым днем.
Математика использует физические задачи для иллюстрации некоторых процессов, явлений и их исследования. Физики же не могут обойтись без аппарата математики. Интеграл – не исключение. Определенный класс задач решается с его использованием. Поэтому довольно актуальным становится обучение учащихся математике (в частности изучение темы «Интеграл») через прикладные задачи физики.
Понятие интеграла является одним из основных в математике. Изучение этой темы завершает школьный курс математического анализа, знакомит учащихся с новым инструментом познания мира, а рассмотрение в школе применения интегрального исчисления к важнейшим разделам физики показывает учащимся значение и силу высшей математики.

Весь текст будет доступен после покупки

отрывок из работы

1.1. Модели и моделирование в процессе обучения

Модель - очень широкое понятие, включающее в себя множество способов представления изучаемой реальности.
Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование вначале этой модели. Многовековой опыт развития науки доказал на практике плодотворность такого подхода.
Под моделью понимается объект, воплощающий данную идею или интерпретирующий некоторую теорию. Построение объекта называется конкретизацией, или моделированием.
Моделирование представляет собой обязательный этап процесса научного познания. Между моделью и моделируемым объектом имеется определенное отношение – модельное отношение. Это отношение показывает, в каком смысле оригинал и его модель подобны, аналогичны.[9]
Применение метода моделирования при изучении математики в школе дает возможность получить наиболее достоверные (поскольку доказательство некоторых математических фактов в школьном курсе не предусмотрено) и наглядные результаты, раздвинуть границы знаний учащихся об окружающем мире, развивать их мышление.
Модель должна быть наилучшим образом приспособлена к восприятию учащихся и учитывать их психологические особенности. В процессе обучения учитель обязан помогать учащимся формировать научный взгляд на мир. В процессе моделирования учащиеся могут научиться таким операциям, как анализ изучаемого объекта, выполнение доказательств, объяснений и т.п.[9]
Операции над моделями учат школьников умению абстрагировать, конструировать, обобщать, т.е. способствуют развитию мышления. Таким образом, моделируя, учащиеся развивают свое логическое мышление.
В моделировании есть два заметно разных пути. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием ряда деталей. Модель может, однако, отображать реальность более абстрактно - словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т.д.
Современная физика – часть общечеловеческой культуры, характеризующей интеллектуальный уровень общества, степень понимания основ мироздания. Среди других наук физика по-прежнему сохраняет роль лидера естествознания, определяя стиль и уровень научного мышления. [9]
Поэтому среди возможных моделей при изучении математики в школе (в частности темы «Интеграл») наиболее актуальными являются физические модели. В работе были использованы:
• известные законы физики (например, второй закон Ньютона в импульсном представлении, всемирный закон притяжения);
• модели физических явлений, выраженные формулами, известными из школьных учебников физики (например, формула мощности постоянного тока, силы взаимодействия между зарядами);
• задачи с физическим содержанием (например, задача о вытекании воды из сосуда, давлении жидкости на стенку).


1.2. Психолого – педагогические и методические основы изучения интеграла в школьном курсе математики

Необходимость изучения интеграла в школе характеризуется тем, что:
1. если изучать только производную, но не изучать интеграл, то цикл анализа одной переменной не будет завершен;
2. в приложениях (в том числе в физике) гораздо чаще, чем задачи на вычисление производной, её применение, используются задачи с использованием интеграла, интеграла и производной;
3. понятие интеграла очень существенно для общего образования учащихся (человек раньше стал решать интегральные задачи).
Целью изучения математического анализа (в том числе интегрального исчисления) в общеобразовательной школе является:
1. овладение основными понятиями (в частности, понятием интеграла);
2. обучение решению простейших задач на применение начал анализа в других школьных дисциплинах, в практике;
При рассмотрении понятия интеграла в школах с углубленным изучением математики возможно также и обучение простейшим методам интегрирования (технике вычисления интеграла).
Учителю в своей работе необходимо учитывать факторы, влияющие на успешность обучения.
Во-первых, следует тщательно отбирать теоретический материал, сочетая научность и доступность изложения. И хотя полностью реализовать принцип научности при изучении интеграла не удается, у учащихся все же формируются правильные представления о процессе познания и его закономерностях.

Весь текст будет доступен после покупки

Список литературы

1. Алимов, Ш. А. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. сред. шк./ Ш. А. Алимов, Ю. М. Колягин, Ю.В. Сидоров и др. - М.: Просвещение, 1993. – 254 c.
2. Башмаков, М. И. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. сред. шк. - М.: Просвещение, 1992. – 351 с.
3. Берман, Г. Н. Сборник задач по курсу математического анализа [Текст]: Уч. пособие. - СПб.: Изд-во «Профессия», 2001. – 432 с.
4. Виленкин, Н. Я., Куницкая, Е. С., Мордкович, А. Г. Математический анализ. Интегральное исчисление [Текст]: Уч. пособие для студентов-заочников II курса физико-математических факультетов педагогических институтов. - М.: Просвещение, 1979. – 175 с.
5. Задачи как средство обучения алгебре и началам анализа в X классе [Текст]: Уч. пособие// Сост. Е. С. Канин. – Киров: Редакционно-издательский совет Кировского ГПИ имени В. И. Ленина, 1985. – 92 c.

Весь текст будет доступен после покупки

Почему студенты выбирают наш сервис?

Купить готовую работу сейчас
service icon
Работаем круглосуточно
24 часа в сутки
7 дней в неделю
service icon
Гарантия
Возврат средств в случае проблем с купленной готовой работой
service icon
Мы лидеры
LeWork является лидером по количеству опубликованных материалов для студентов
Купить готовую работу сейчас

не подошла эта работа?

В нашей базе 78761 курсовых работ – поможем найти подходящую

Ответы на часто задаваемые вопросы

Чтобы оплатить заказ на сайте, необходимо сначала пополнить баланс на этой странице - https://lework.net/addbalance

На странице пополнения баланса у вас будет возможность выбрать способ оплаты - банковская карта, электронный кошелек или другой способ.

После пополнения баланса на сайте, необходимо перейти на страницу заказа и завершить покупку, нажав соответствующую кнопку.

Если у вас возникли проблемы при пополнении баланса на сайте или остались вопросы по оплате заказа, напишите нам на support@lework.net. Мы обязательно вам поможем! 

Да, покупка готовой работы на сайте происходит через "безопасную сделку". Покупатель и Продавец финансово защищены от недобросовестных пользователей. Гарантийный срок составляет 7 дней со дня покупки готовой работы. В течение этого времени покупатель имеет право подать жалобу на странице готовой работы, если купленная работа не соответствует описанию на сайте. Рассмотрение жалобы занимает от 3 до 5 рабочих дней. 

У покупателя есть возможность снять готовую работу с продажи на сайте. Например, если необходимо скрыть страницу с работой от третьих лиц на определенный срок. Тариф можно выбрать на странице готовой работы после покупки.

Гарантийный срок составляет 7 дней со дня покупки готовой работы. В течение этого времени покупатель имеет право подать жалобу на странице готовой работы, если купленная работа не соответствует описанию на сайте. Рассмотрение жалобы занимает от 3 до 5 рабочих дней. Если администрация сайта принимает решение о возврате денежных средств, то покупатель получает уведомление в личном кабинете и на электронную почту о возврате. Средства можно потратить на покупку другой готовой работы или вывести с сайта на банковскую карту. Вывод средств можно оформить в личном кабинете, заполнив соответствущую форму.

Мы с радостью ответим на ваши вопросы по электронной почте support@lework.net

surpize-icon

Работы с похожей тематикой

stars-icon
arrowarrow

Не удалось найти материал или возникли вопросы?

Свяжитесь с нами, мы постараемся вам помочь!
Неккоректно введен e-mail
Нажимая на кнопку, вы соглашаетесь на обработку персональных данных